The effect of drought on moorland fire severity

Grau Andres, R.1; Davies, G.M.1; Waldron, S.2; Bruce, M.3

¹ School of Interdisciplinary Studies, University of Glasgow; ² School of Geographical and Earth Sciences, University of Glasgow; ³ Firebreak Services Ltd.

INTRODUCTION

Summer drought is projected to become more common in the UK, which may lead to increased fire severity.

OBJECTIVES

This project aims to study:

- Changes in fire severity between treated (rainfall deprived) and control plots.
- The effect of drought on fuel moisture content.
- The effect of differences in fire severity on vegetation regeneration.
- The effect of differences in fire severity on peat carbon dynamics.

METHODOLOGY

DRY HEATH

Peat heating (2cm depth)

Peat heating (top peat)

Drought shelters were used to simulate summer drought, lowering fuel moisture content.

 \circ

residence

Temp

Smouldering observed for extended periods in locations covered by drought shelters.

WET HEATH

Peat heating (2cm depth)

Peat heating (top peat)

Control

Drought

RESULTS

SUMMARY

Our results show that summer drought lead to a significant increase in peat heating and moss consumption. The rise in fire severity is of a greater magnitude in dry heaths than in wet heaths. Further monitoring will be carried out to assess the impact of more severe fires on vegetation regeneration and peat carbon dynamics.

